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ABSTRACT: The flow structure of a jet at high pressure issuing normally from an orifice in a
flat plate into a supersonic stream was examined using a Reynolds-averaged Navier-Stokes
solver. The study confirmed the presence of secondary horseshoe vortices as well as
identified new vortical structures that emanated downstream of the jet.

1 Introduction

The jet issuing normally from an orifice into a supersonic stream produces a complex three-
dimensional flowfield, sometimes known as el sk

jet interaction (JI), which is rich in
topological features. Some similarity exists
between this flowfield and that induced by a
cylindrical protuberance [1,2] that yields a
so-called semi-infinite interaction [3],
although the JI  flowfield is further ,
complicated by the interaction of two gas  Herseoevorices v

streams. The general near-field features of a retctmen ek )

JI are shown in Fig. 1 for a jet with a jet Do oo
pressure ratio above unity [4]. The normal jet

appears to be a blunt object to the incoming Figure 1. Currently accepted near field mean flow
flow which produces a bow shock. This Structure 4l

shock induces a three-dimensional, boundary layer interaction with a characteristic A-foot shock
structure and strong horseshoe vortices from vorticity creation via stretching of the vortex lines
and baroclinic torque. The expanding jet is deflected by the main flow and a further shock,
known as a barrel shock, is created. Vorticity creation within the jet produces a set of counter-
rotating jet vortices which dominates the downstream flow. In addition, a reattachment shock is
observed near the surface, downstream of the orifice.

The flowfield structure described above is primarily obtained from experimental observations
using shadowgraphy and laser lightscreen and was also guided by subsonic observations [5].
This flow continues to remain to be a topic of great interest, with recent studies utilizing
nonintrusive flowfield mapping and large eddy simulations to provide extremely detailed
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information.  Technological interest in JI centers primarily on fuel injection into scramjet
combustors [6-12] and in aerospace vehicle control [13-21].

This paper is concerned with topological features that arise at the high nozzle pressure ratios
when JI is used for vehicle control purposes at high altitudes. It is well known that three-
dimensional flows can possess a fascinating variety of topologies [22], the study of which dates
to Poincaré in the late nineteenth century. For a long while, attention was placed primarily on
surface topologies, particularly in high-speed aerodynamics, due to the difficulties of describing
off-surface topologies in gaseous flows with its high level of diffusion or in the inherent
unsteadiness at high Reynolds number. However, the ability to perform instantaneous or time-
averaged flowfield mapping and computations have allowed detailed flowfield topologies to be
revealed [23-26]. The present study reports new time-averaged features that observed through a
parametric series of three-dimensional, Reynolds-averaged Navier-Stokes computations at
various Mach numbers. There may be concern that flow unsteadiness, especially in the
downstream region of the JI, may be important in understanding the physics of JI. Within the
scope of this paper, this concern is obviously not addressed. However, the visualizations
presented here provide details that hitherto have not been observed and thus represent a step
toward a better understanding of the physics of JI.

2 Method

2.1 Governing Equations and Numerical Approach

The Reynolds-averaged conservation equations are solved numerically using a finite-volume
scheme. The conservation equations are discretized using a first-order forward difference
operator for the time derivative and a second-order central difference operator for the viscous
terms. The Van Leer MUSCL upwind extrapolation is used for determining the face properties.
Roe’s flux splitting method is used for the inviscid flux terms. A two-equation x -« is used to
model the turbulence [27]. The numerical model was validated against [28]. Further details,
including a mesh refinement study and a discussion on convergence of the numerical solution,
can be found in [29].

2.2 Configuration and Flow Conditions

The configuration comprised of a 457.2 mm square plate with a jet orifice, 2.54 mm in diameter,
located on the centerline at 177.8 mm from the leading edge. The coordinate system is located at
the center of the orifice, with x in the downstream axial direction, y in the normal direction and

z in the spanwise direction. The orifice forms the exit of a convergent nozzle. The total
pressure of the jet that leaves the nozzle is set by the pressure ratio. The results discussed are
obtained at Mach 2, with others obtained at increments of Mach 0.5 to Mach 4.5, see Table 1.
The total temperature for the freestream or jet is 244 K. Adiabatic conditions are assumed for the
flat plate. The Reynolds number was set at 6.56 million per m for the entire study. To maintain a
constant Reynolds number and total temperature requires that the pressure be varied, as is evident
in Table 1. After the pressure is determined, the jet pressure ratio

which is the jet total pressure normalized by the freestream pressure, is also fixed at values
ranging from 5 through 2000. Jet interactions at very high pressure ratios have not been
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previously examined in detail and are of interest in the present study. Table 1 also lists the
momentum flux ratio, defined as

2
37 P;M; )
V.PM]
Since the jet is air and the orifice is choked,
-7/(r-1)
-1y PR
J=|1+— —
[ 2 j M’ )

However, due to viscous effects that resulted in a vena contracta near the jet exit, the Mach
number at the exit is not uniform and its average value is 1.15 for all the cases studied. This
resulted in about a 15 percent underestimate in the value p; and J. This underestimate is not

significant for the present study which considers a wide range of J from 0.88 through 322.
Finally, the flow is assumed to be turbulent from the leading edge. This assumption is not
expected to result in errors in the JI phenomenon under investigation.

Table 1. JI cases examined.

M, 2.0 2.5 3.0 35 4.0 45
p, , kPa 9.85 7.87 | 656 | 5.62 | 492 | 4.38
PR 5 15 100 | 500 | 1000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000
J 088 | 264 | 176 | 879 | 176 | 322 | 206 | 143 | 105 | 80.5 | 63.6
vV, m/s 303

3 Results and Discussion

3.1 Surface Topology

To simplify the discussion, the skin friction topology will be examined first. The skin friction
lines together with surface isobars for the cases examined at Mach 2 are shown in Fig. 2.
Consider first the low PR =5 case of Fig. 2a. The incoming surface flow encounters the obstacle
posed by the normal jet and an open separation, labeled “global lines of separation” ensues [22].
Topological rules dictate the presence of a saddle point followed by an attachment node. Figures
2b—f show the same upstream surface topology but with the features spread further apart. The
spread in the spanwise direction is larger than in the upstream direction.

While the upstream surface features appear to be the same but further spread out despite the large
variation in jet pressure ratio, the downstream surface flow shows distinct changes mostly via a
downstream stretching of the distances between the singularities. For the low PR = 5, three
saddle points and a pair of foci of separation occur near the rear of the orifice. As the jet pressure
ratio increases, the rear pair of saddle points is pushed further downstream and an attachment
node is observed Note that the rear saddle point near the orifice remains fairly close to the orifice,
but the other saddle point moves downstream and another saddle point along with an attachment
node appear. A global line of separation in the downstream surface flow is also observed.
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Fig. 2. Skin friction lines with surface isobars at Mach 2.
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3.1 Flow Field Features

The surface topology does not fully reveal the complexity of the flow field, especially in the
downstream region when the pressure ratio changes. For illustrative purposes, the salient flow
field features for the Mach 2, PR = 15 case are shown in Fig. 3. Figure 3a shows an upstream A-
shock structure that arises from a shock/boundary layer separation. This separation results in a
primary horseshoe vortex system that wraps itself around the jet which then trails downstream, as
seen in Fig. 3b." The primary horseshoe vortices are associated with the global line of separation.
A small secondary vortex is also identified in Fig. 3a between the shock and the jet that had not
been well identified by previous computations [10,19,20] although Roger and Chan [30]
mentioned a characteristic double horseshoe vortex structure in front of the jet which proceeds
around and downstream. Nonetheless, the present study shows that the secondary horseshoe
vortices are blocked by the primary horseshoe vortices from the surface (Figs. 3b and c). This is
thought to be why the secondary vortices are not captured by surface flow visualizations.
Further, the secondary horseshoe vortex can become a significant feature when the PR is large.
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Fig. 3. Jl upstream flowfield features at
Mach 2, PR =15.
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c. Secondary horseshoe vortices.

The primary horseshoe vortex is sometimes considered to be a pair of counter-rotating vortices, which is adopted
presently.
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Fig. 4. Upstream horseshoe vortex for an incoming flow of Mach 2 and PR = 2000.

a. Primary horseshoe vortex. ' b

This is illustrated in Fig. 4 for PR = 2000, where the primary horseshoe vortex is shown in the
left and the secondary horseshoe vortex is shown in the right. For a proper scale between the two
subfigures, refer to the size of the jet orifice between them. It can be seen that the secondary
vortex occupies a large vertical portion of the upstream interaction flowfield. The secondary
horseshoe vortices also become more distinct with increasing jet pressure ratio, becoming a
significant feature of the flowfield. This can be seen by a comparison between Figs. 3c and 4b
for PR = 15 and 2000 respectively.

Downstream features are shown in Fig. 5. The jet vortices shown schematically in Fig. 1 are
revealed in Fig. 5a. The simulations show that the jet and secondary vortices are intertwined,
which may be why the secondary vortex was not previously revealed in experimental flow
visualizations.

New downstream features are revealed in the present study. These include horn, near-field and
far-field vortices, seen in Figs. 5b—d, respectively. The streamlines wrapping around the dividing
surfaces emanating from the global separation lines formed into horn vortices which are small
features just downstream of the orifice. These horn vortices are distinguished from the wake
vortices, which have been reported in the past but not well understood either [14]. The present
study shows that the wake vortices remain close to the surface and persists to the end of the
computational domain.

4 Conclusions

Visualizations of time-averaged solutions of a jet issuing normally into a supersonic stream
confirmed features that have been observed previously. In addition, the present study showed the
existence of a secondary horseshoe vortex pair that intertwined itself with the jet vortices. The
secondary horseshoe vortex pair remained within the flow and thus did not leave a footprint in
surface visualizations. The study also revealed the presence of horn vortices just downstream of
the orifice that were engulfed by the jet vortices. In addition, surface hugging wake vortices
persist toward the exit of the computational domain.
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